〜終わり〜
■ぜひアンケートにご協力下さい■
電気理論を理解するためには、電磁気現象、電気回路、その応用としての計測など多くの分野の知識が必要で、これらの分野を関連付けて覚えておくことは、電気理論の理解を深めるうえで重要である。特に、初学者は摩擦電気と呼ばれる静電気の諸現象から勉強をはじめることが多いため、静電気そのものが電球を点灯させ、オームの法則を成立させる動電気と本質は同じものであるにもかかわらず、その関連がつかみにくい。ここでは、静電気から動電気への橋渡しを手助けするため、実験例などを紹介しながら、理論的考察も含めて解説する。
ふだん我々の周囲にある物質は、電気的には物質内の元素における正電荷をもつ原子核と、負電荷をもつ電子が中和しており、電気的性質は外部には現れない。しかし、例えば第1図に示すようにストローをティッシュペーパーでこすると、ストローにティッシュペーパーからの電子が入り込み、負電荷がたまる。一方、ティッシュペーパーは電子が不足するため正電荷をもつことになる。いわゆる分極作用が生じて、はじめ中和状態にあったストローとティッシュペーパーは帯電したことになる。
この事実を確認する一つの方法は、第2図に示すようにペットボトルの上に鉛筆を乗せてストローを近づけると、正、負の電荷間に働くクーロン力によって鉛筆は回転する。
ストローと鉛筆が引き合うクーロン力による現象はお互いが電気を帯びたためであり、明らかに静電気の働きである。しかしながら、引き合う現象が観察できたからといって、この事実だけでは静電気が電灯をともす電気と同じものであるという理解にはつながらないはずである。
そこで、この静電気をたくさん集めたら電灯をともすことができるのであれば、証明できるではないかと考えて、更に次のような実験を試みることにする。今度はストローとティッシュペーパーの代わりに、塩化ビニルの太い筒と毛皮を用意し、塩化ビニルの筒を毛皮で強く摩擦した後、暗室のような暗い場所で、キャンプなどで使う小型蛍光灯(4W程度)を塩化ビニルの筒に近づけてみると、瞬間的に点灯することが分かる(第3図)。これは塩化ビニルに蓄えられた電荷が人の身体を通じて流れたため瞬間的に光ったためである。
更に静電気をもっと多量に集めれば、15W程度の蛍光灯でも明るく点灯させることができる。そのためにはプラスチック球をゴムベルトで激しく摩擦するためのモータを備えた、物理実験などで使うバンデグラ—フと呼ばれる装置が必要となる(第4図)。
以上のような実験を見れば、摩擦によって得た「静」電気も、我々がコンセントから利用している「動」電気も本質は同じものであることが推量できるであろう。つまり、動電気とは静電気が動いて流れている電気と考えればよい。我々が毎日利用している電気は動電気であるが、これは負電荷をもつ電子が絶え間なく移動している状態を示しているのである。静電気は持続せず、たまった電荷が流れ終わったらおしまいである。したがって、これまで説明した実験で塩化ビニルを毛皮で摩擦して蛍光灯を点灯させても観察できるのは一瞬である。
静電気の学習でよく例に出される落雷現象の場合も、雷雲と大地の電位差が火花放電によって相殺されることによって雷がやむのと同じ原理である。ただし、先のバンデグラーフ装置の場合は、モータを回している限り、静電気を供給し続けるため、蛍光灯の点灯は持続する。
歴史を振り返ると、静電気中心の研究の時代が動電気時代に移行したのは、ボルタの電池の発明によって電流(電荷の移動)を連続的に利用することが可能になったからである。
これまで実験によって静電気と動電気の本質は同じものであることを証明したが、静電気に関する理論として、クーロンの法則から直流回路まで論理的に関連付けることはできるだろうか。多くの参考書において、まず静電気理論を学んだ後オームの法則、更に直流回路へと学習を進めさせるねらいもここにある。大筋でこの流れを見てみよう。静電気では次のような順序で学習書の内容を進めていく(第5図)。
第5図に基づいてオームの法則に至るまでの要点を述べることにする。